
Eberos GML2D: A Graphical Domain-Specific Language
for Modeling 2D Video Games

Frank E. Hernandez
Rounin Labs

Miami, FL 33175, USA
hernandez.f@rouninlabs.com

Francisco R. Ortega
Rounin Labs

Miami, FL 33175, USA
ortega.f@rouninlabs.com

ABSTRACT
The complexity of game development has increased in the
past 30 years, from a task that could almost be entirely
handled by a single programmer to an endeavor requiring
a large team. To reduce this complexity, we have devel-
oped a Domain-Specific Language (DSL) targeting the mod-
eling of two-dimensional (2D) games. We call this language
Eberos Game Modeling Language 2D (Eberos GML2D1).
By raising the level of abstraction through modeling, we al-
lowed a simpler specification of the game, and reduced the
time and programming efforts. In order to evaluate our ap-
proach, we modeled two games and compared the difference
between the amount of work required to write the game
from scratch and the amount required using our proposed
language. These evaluations yielded promising results of
86.4% savings on programming effort, and 82.3% savings on
programming time.

Keywords
Graphical Domain-Specific Language, Model-Driven Devel-
opment, Video Game Modeling Language

1. INTRODUCTION
Over the past 30 years, and especially so the past 10 years,
games have become so large and complex that they can
no longer be developed by single-man teams [12, 3]. Even
though this level of complexity is reduced by the use of game
engines, game development still remains a complex, time and
resource-consuming task, taking teams from between two to
three years to complete a single title [11]. We believe that
the game industry could benefit from applying Model-Driven
Development (MDD) approaches by raising the level of ab-
straction of the game-development process. We propose a
graphical Game Modeling Language (Eberos GML2D2)
that represents the game in an intuitive fashion. The ab-
straction provided by our graphical language also allows the
models to be translated into game engine level code or code
to be used by underlying libraries. This means that the
same game can be produced for multiple platforms. Finally,
we reduce the number of lines of code that must be written
by game developers by automating the creation of repetitive
code.

1A video with the current implementation of the editor
for Eberos GML2D can be found at: www.cs.fiu.edu/
~fhern006/Projects/EberosGML2D_Editor.html
2A video on how to model Pong using Eberos GML2D
can be found at: www.cs.fiu.edu/~fhern006/Projects/
EberosGML2D_Editor_2.html

Game development is a multi-disciplinary process, bringing
together: graphics, sounds, input, and networking. This
means that developers must implement code to interact with
the sound card, video card, input devices, and network de-
vices as well as implement the code for the game itself. Most
game engines already provide support for interacting with
the platform’s hardware, but few offer any kind of support
for the development of the game code or logic.

In order to validate the expressiveness of our language, we
decided to model two completely unrelated games. The first
game, Pong, is the minimal game considered. Pong is com-
posed of two paddles, one on each side of the screen, and
a ball. The goal of the game is for each player to try and
bounce the ball past the opposing player’s paddle in order to
score. The second game modeled is SpaceKatz, a title cur-
rently under development by the members of Florida Inter-
national University’s (FIU) SIG-Game, and it is a game of
medium complexity consisting of menus, enemies and levels.
The goal of the game is for the player to navigate his/her
ship through the levels, avoiding obstacles and destroying
the enemies along the way to beat a final boss. This game
includes multiple menus, enemies, and levels, thus an ob-
vious choice to demonstrate the current capabilities of our
proposed language.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the entire Eberos GML2D. Section 3
presents the design of the experiments, our results and what
findings we had. Section 4 presents the related work.

2. MODELING A 2D GAME
In this section we describe the requirements for a game mod-
eling language, which was distilled after several discussions
from domain experts and five years of game development ex-
perience of one of the authors. Then, we present the Eberos
Game Modeling Language 2D (Eberos GML2D), which is
our proposed language to meet our stated requirements. In
particular, we have identified the following requirements for
the game modeling language:

Simplicity: It must be simple and intuitive.

Platform-independent: It must be independent of any
underlying game platforms.

Library/Game Engine-independent: It must be inde-
pendent of game engines and/or development libraries.

Expressiveness: It must be able to model a large majority
of game development scenarios.



Figure 1: Eberos GML2D Model for the Game of Pong.

2.1 Sprite and Animations
A sprite in the 2D game development domain refers to a two-
dimensional image that contains the graphic representation
of a single item in the game. Sprite sheets contain multiple
consecutive smaller sprites that can be used by the game
developer to create the illusion like movement or explosions,
among other illusions. A 2D game without any images or
movement can be very dull at best, so any game modeling
language must provide support for modeling graphical be-
havior.

In our language, a sprite is represented by the Sprite2D
construct. This contains information about the initial lo-
cation in the file system of the image or resource file.
A Sprite2D also contains information about the height,
width, and X and Y positions on the screen of each indi-
vidual sprite. The size and position information are used
when a sprite has no specified animations. If the sprite has
an animation, then the size and position information of the
current animation replaces the information specified in the
Sprite2D.

Animations are used to graphically represent the actions
that are performed by game entities on the screen, such
as swimming. In Eberos GML2D, each Sprite2D can
have zero or more animations which can be of one of two
kinds: SimpleAnimations or CompositeAnimations.
In Eberos GML2D, SimpleAnimations are composed
of uniform frames, ordered from left to right, all together
representing a graphical action taken by a game entity. A
SimpleAnimation contains information about the location
on the resource image of the first frame of the animation,
the delay of each frame and the total number of frames in
the animation. CompositeAnimations give more freedom
to the modeler when it comes to modeling a sprite’s anima-

tions by allowing the specification of the animations on a
frame-by-frame basis. In our language, animation frames are
modeled using the Frame2D construct and only Compos-
iteAnimations are composed of one or more Frame2Ds.
Frame2Ds contain information about the position on the
resource file and the size of a single frame of the animation.
CompositeAnimations differ from SimpleAnimations
in that they can be composed of frames of different sizes,
represented by Frame2Ds.

2.2 Entities
Every game is composed of entities of one kind or another.
While sprites are graphical representations of game compo-
nents, entities are the program representation of these com-
ponents. These entities can represent players, items, ene-
mies, and menus, among other components. The same way
that games revolve around the concept of entities so does
our language.

Currently, Eberos GML2D supports the modeling of
UserDefinedEntities and EntityPools. UserDefine-
dEntities allow the modeler to model custom game enti-
ties, and are represented using the UserDefineEntity con-
struct. In our language, entities can contain zero or one
sprite, thus allowing the modeler to represent both graphi-
cal and non-graphical entities. While graphical entities may
represent players, and enemies, non-graphical entities can be
used to model those entities that cannot be seen by the game
player, such as triggers or area boundaries. In our language,
UserDefinedEntities can be composed of zero or more en-
tity references; this allows for the definition of atomic as well
as composite entities while modeling the games.

Entities in a game can either be controlled by the player
(PC) or by the program, as in the case of non-playable char-



acters (NPC). In Eberos GML2D, InputHandlers are
used to model the user’s input handling logic. Each entity
reference that can be controlled by the player’s input will
have an InputHandler attached to it in the model. The
current version of the language supports only the modeling
of keyboard input, but the ability to model mouse input and
console controller input are currently being explored. Key-
board input is modeled by providing the InputHandler
with a Keyboard:Key for each key to handle. Each Key-
board:Key can only map to a single key and is selected
from a keyboard key enumeration containing every key in
the keyboard. These allow the user to specify which key the
InputHandler will handle, as well as what GameMessage
the input handler will send the controlled entity when that
key is affected (GameMessages will be covered later in
this section). Keyboard:Keys can be modeled to detect
one of four possible key states; DOWN, RELEASED,
WAS PRESSED, and IS HOLDING. This allows the
user to model a specific behavior, depending on the state
of the key. One might want the player character to move
left for as long as the “Left” key is pressed (DOWN) but
might only want the player’s character to attack every time
the “Space Bar” is pressed (WAS PRESSED). The means
for modeling the behavior of program-controlled entities are
described in the following section.

2.3 Logic
Having the ability to model the game logic for game enti-
ties was one of the main motivations for developing Eberos
GML2D. While working on a previous project, we realized
that a lot of the code used for modeling our game entities’
logic was being constantly reused, and only a small section
was modified slightly for each specific entity. This led us
to develop a language for modeling this logic, which in turn
led us to explore further and see how much of the game
could be modeled, thus giving birth to Eberos GML2D.
The current version of Eberos GML2D supports model-
ing of Moor finite state machines with one concurrent level
of execution. This will not remain for long, as we continue
to expand our language to allow for modeling of goal-based
agents [13], as well as other kinds of artificial intelligence
(AI) agents.

In our current version of the language, game entities may
possess at most one GlobalState, and at most one State
[1]; these represent the initial states of the FSMs for this
entity type. In Eberos GML2D, finite state machines
are modeled by connecting states together via the use of
a TransitionMessage. A TransitionMessage represents
the message that triggers a transition from one state to an-
other. Each entity can have at most one global state ma-
chine, and at most one current state machine. In our lan-
guage, transitions can only occur between states of the same
type. States can only transition to States, and Global-
States can only transition to GlobalStates. In Eberos
GML2D, States are used to model the logic of a game en-
tity, and can also be used to model the AI or behavior of
computer-controlled game entities. GlobalStates are simi-
lar in behavior to States, but instead they model behavior
that may occur during the execution of any state of the en-
tity.

Our language also allows the user to insert previously-

generated scripts to further increase the state’s logic; these
are provided in the form of ActionScripts. ActionScripts
come in four varieties: ActionScript: OnEnter, Action-
Script: OnUpdate, ActionScript: OnExit, and Ac-
tionScript: OnMessage. Each ActionScript contains
information about the script’s ID, the script’s import order
and the script’s location in the file system. The import order
of a script represents the location where the script should
be inserted in the final code in relation to other inserted
scripts. Each of these scripts adds code to the state’s respec-
tive section OnEnter, OnUpdate, OnExit, and OnMes-
sage, and is assumed to have been validated by an external
tool. From all of the scripts, ActionScript: OnMessage
is the only one that is handled in a different fashion; this
represent snippets of code that will only be executed when
the specified GameMessage is received.

ActionScripts allow the modeler to add behavior to the
entity logic that can not be modeled with the current ver-
sion of Eberos GML2D. ActionScripts are expected to
be valid code for the underlaying platform on which the final
generated code will be running. The current nature of these
scripts both add expressiveness and restricts our language.
Since the ActionScript are directly copied over during the
translation of the model, this means that the game model
can only be translated to a specific platform, thus reducing
the number of platforms to which the model can be trans-
lated. At the same time, this script allows for support of
behavior that could not otherwise be expressed with the
current version of our language.

2.4 Collision Detection
Collision detection refers to the act of detecting whether
or not two or more game entities have come into contact
(collide) with one another. There are a few methods for
handling collision detection in 2D games: bounding boxes,
bounding circles, and pixel-level collision, just to mention a
few of the most common ones. Eberos GML2D supports
modeling of two of these, bounding circles and bounding
rectangles (bounding boxes). In our language, entities may
contain zero or one bounding object which can either be a
BoundingRectangle or a BoundingCircle.

BoundingRectangles are used to model collision detec-
tion between entity boxes. A BoundingRectangle repre-
sents a bounding box for a game entity, which is used in the
game to detect when a collision has occurred. Currently,
the user can specify both the width and the height of each
entity’s bounding rectangle. Similarly, BoundingCircles
are used to model collision detection between circles. The
user specifies the radius of the circle for the entity’s collision
detection.

2.5 Game Controllers
Game controllers allow the user to model game managers
and similar control units, such as music managers and mes-
sage managers. The GameRoot construct represents the
entry point into the game. All games must originate at the
game root; this represents the Main in many programs. The
GameMessage:Tracker contains all messages available in
the game. Any message handled or triggered by game enti-
ties must be registered with the GameMessage:Tracker;
this ensures that all messages exist in the final generated



game code. GameMessages represent a single type of mes-
sage in the game, usually an enum or value. Games can be
composed of multiple messages, each representing a kind of
information to be sent to or handled by game entities. Last
but not least, we have the GameMusic:Manager; it allows
the Eberos GML2D user to model all the music and sound
effects in his/her game. This allows the user to specify the
sound resource that is needed by allowing him/her to spec-
ify the location in the operating system. Upon translation,
all the resources are placed in a local directory, and their
correct path is written along with the code generation. This
automation has been shown to reduce the number of code
errors occurring from incorrect resource paths. The user can
model sound effect tracks using the SFXTrack construct,
which allows him/her to set the in-game ID of the track and
graphically specify the resource file. Sound effect tracks are
used for short sounds used inside the game, a gunshot or
an explosion. Similarly, longer music tracks can be modeled
with the BGMTrack construct. A BGMTrack represents
a single background music track. These tracks are used for
playing songs or similar scenic music. BGMTracks are
much longer in duration than SFXTracks.

3. EXPERIMENTAL EVALUATION
In this section, we describe the experiments we performed to
evaluate our language Eberos GML2D. We first present
the design of our two experiments, then the results, followed
by a discussion of our findings. Since our intent is to reduce
the amount of both time and work required to develop 2D
games, we use two metrics in our experiments: time and
lines of code (LOC) required to develop each game with
and without Eberos GML2D. We used Microsoft’s XNA
game engine for developing the games from scratch. The
generated models were also translated into XNA Code as
well.

3.1 Procedure and Scenarios
In order to evaluate Eberos GML2D, we developed each
of the following game specifications first without using our
approach, and then a second time using our DSL. We then
timed both entire processes from start to completion. The
second metric we used was the lines of code (LOC) of each
version of the game, DSL vs. Non-DSL. Since SpaceKatz
(Game Specification 2) is an attempt to model a game being
developed by the students of SIG-Games at Florida Inter-
national University (FIU), we decided to use their existing
project as a comparison instead of writing this game from
scratch ourselves. We believe this gives us a more accurate
set of data by comparing our approach with a real ongoing
game-development process.

Game Specification 1 - Pong: Pong is as simple a 2D
game as they come; it consists of two paddles (one for each
player located at each end of the screen) and a ball. The
ball bounces off the walls and the player’s paddle. The goal
of the game is to get the ball past the opponent’s paddle in
order to score.

Game Specification 2 - SpaceKatz: SpaceKatz is a
‘Shoot ’em Up’ style of game, where the player must pilot
through asteroid fields while destroying enemies in the pro-
cess. This game consists of one main screen with the game
logo. Following the logo screen, the player is presented with

a menu where he/she can select what options to set or di-
rectly start the game. After selecting to start the game, the
player is presented with a menu to choose the level or area
to play. Once an area is selected the game begins, and the
player is presented with the spaceship to pilot. A player can
move in all four directions by pressing the keyboard keys
(Left, Right, Up, Down); he/she can also shoot missiles by
pressing the “Space Bar” key on the keyboard. The game
ends when the player loses all of his/her lives.

3.2 Experiment Setup
In this section we present the set up for both or our exper-
iments. The results in lines of code represents the number
of lines of code in XNA/C# required to complete both the
game by hand and the game using Eberos GML2D.

Set Up Experiment 1 - Pong: First the game of Pong
was implemented by hand, then it was modeled and imple-
mented, both by the main author of this paper.

Set Up Experiment 2 - SpaceKatz: For the experiment
of SpaceKatz, we used an existing project from SIG-Games.
We gathered the information of lines of code and time taken
from this existing project then we preceded to model the
current state of this game and program it using our language.
In the case of SpaceKatz the game without our proposed
language was developed by the members of SIG-Games while
the game implemented using Eberos GML2D was written
by the main author of this paper.

Note: We feel it is important to note that SIG-Games is a
group dedicated to training students to become game devel-
opers, and that past members have worked on AAA titles
such as Bioshock 2.

3.3 Results
In order to perform the experiment, we developed a graph-
ical editor for Eberos GML2D using the Microsoft DSL
Tools [4]. In order to show the efforts saved using our ap-
proach compared to implementing directly, we have sum-
marized our results in Table 1 and Table 2. We also im-
plemented a code generator to transform Eberos GML2D
models into Microsoft XNA code. The numbers given repre-
sent the two metrics we used when evaluating our language:
time and lines of code (LOC).

For each game explored, we show the actual effort of directly
implementing the game, and the actual effort of implement-
ing the game using our language. In Pong, we could reduce
39 (131 - 92) lines of code (LOC) written by the user and,
as a result, 29% (39/131) of the amount of work required by
the user was reduced. Table 1 also shows a savings of 3 (34
- 31) minutes, a 8.82% (3/34) savings on the time required
to develop the game by using Eberos GML2D as opposed
to implementing it without it. We also present the results of
applying our approach to SpaceKatz, a more complex game
than Pong. Using our approach as seen in Table 2, we were
able to reduce 3303 (3822 - 519) lines of code written by
the user, and save 86.4% (3303/3822) of the amount lines of
code as opposed to implementing the game directly. There
was also a significant reduction of 24.67 (30 - 5.33) hours
required, a savings of 82.3% (24.67/30) of the time spent



Table 1: Effort for creation of Pong using Eberos GML2D vs. manually developed

Game: Pong Eberos GML2D Manually Developed

Development Time(Hours)
0.13 Modeling 0.56 Implementing

+ 0.38 Implementing
= 0.51 total

Effort in lines of code(LOC)

92 User Generated 131 User Generated
+ 74 XNA Generated + 74 XNA Generated
+ 1870 Auto Generated
= 2036 total = 205 total

Table 2: Effort for creation of SpaceKatz using Eberos GML2D vs. manually developed

Game: SpaceKatz Eberos GML2D Manually Developed

Development Time(Hours)
0.51 Modeling 30.0 Implementing

+ 4.81 Implementing
= 5.32 total

Effort in lines of code(LOC)

519 User Generated 3822 User Generated
+ 74 XNA Generated + 74 XNA Generated
+ 5546 Auto Generated
= 6139 total = 3896 total

creating the game by using our approach as opposed to im-
plementing the game without it.

3.4 Discussion
From Table 1 and Table 2, we can see that the amount of sav-
ings varies greatly depending on the complexity of the game.
We attribute the difference in the effort percentage between
Pong 29% and SpaceKatz 86.4% to the expressiveness of
our language, and the level of complexity of the games di-
rectly. The game of Pong consists mostly of interactions. As
a result of this, while we were able to model a large set of
the user input game representation, there was also a bit of
game behavior that could not be modeled with the current
version of Eberos GML2D. In comparison, with a more
complex game like SpaceKatz, which requires a lot of imple-
mentation of user and game logic, as well as enemies’ AI, we
obtained a better savings of 86.4% less lines of code. With
the logic section of Eberos GML2D, we were capable of
modeling a large section of the agent logic for the enemies,
menus, and player, something that had to be otherwise im-
plemented without using our approach. Similarly, we were
able to model the entities, bullets, asteroids, and pool of en-
tities using Eberos GML2D, which had to be implemented
for non-DSL version of the game.

4. RELATED WORK
In this section, we discuss some of the existing works that
share our goal: abstracting the complexity of game develop-
ment through modeling. Prior work on reducing the com-
plexity of the game development process includes tools like:
Unreal Kismet [5, 2], Game Maker [10], and above all
SharpLudus software factory [6, 8]. SharpLudus, the

closest of these approaches to ours, is explored in detail at
the end of this section.

4.1 Unreal Kismet
Unreal Kismet is a visual scripting system that can be
used to create complex scripted sequences quickly and easily,
with little programming knowledge [5, 2]. This provides a
higher level of abstraction from the Unreal Engine [2],
and provides game designers with the ability to model their
game’s interactivity without much programming knowledge.

Unreal Kismet [5, 2] allows users to create objects and en-
tities without making a distinction of graphical representa-
tion. Since Unreal Kismet is designed to model the inter-
activity of levels in the Unreal Engine [2], it has no means
of modeling the graphical representations of game entities.
Unlike Unreal Kismet, our approach Eberos GML2D,
makes a clear distinction between sprites and animations,
which are the representations of the graphical components.
This allows the user of Eberos GML2D to model the ap-
pearance of the game as well as some of the behavior of the
entities.

One aspect that Eberos GML2D can improve on is the
concept of “combinations” used in Unreal Kismet [5, 2].
The approach referred as “combinations,” includes gates and
delays. The gates allow an impulse to either flow or stop the
flow using “open”, “close” and “toggle” modes. The delays
are impulses, which are held for a set amount of time. One
example of delays is for a shooting game, where, for every
three seconds, a gun will fire toward the player. Our cur-
rent version of Eberos GML2D provides little support for



modeling the actions of the game entities, and thus can ben-
efit from applying some of these concepts used in Unreal
Kismet.

4.2 SharpLudus
The closest work to Eberos GML2D is SharpLudus,
a domain-specific language approach [6, 8]. It presents a
domain-specific language called SharpLudus Game Model-
ing Language (SLGML), and is aimed at modeling video
games in the 2D adventure genre. SharpLudus can cre-
ate a game with some restrictions without the need to code
while generating .Net 2.0 C# code.

A restriction with SLGML is that it only models adven-
tured games. At first glance, this decentralized approach
of having multiple modeling languages: one for adventure
games, one for racing games, one for shooting games, may
seem the proper approach. However, the definition between
adventure, racing or shooting games may be a blur, espe-
cially if one game designer may consider developing a hybrid
design where different aspects from all these games are used
to make a new game or even a new genre. In the previous
example, using the decentralized approach mentioned, since
the adventure DSL knows nothing about the racing DSL,
such a game could not be developed. In addition, our be-
lief is that the 2D gaming domain is specific enough to be
expressed by a single language [6, 8].

At a superficial level, both languages share some common
ideas. For example, they both have entities, SLGML being
a lot more restricted. There can only exist one main charac-
ter in SLGML restricting the use of simultaneous players.
Another shared concept, is the support for sprites, which are
common in game development. Sprite support in SLGML
consists of a list of physical images, each of them having
an independent delay and an option to loop the animation.
In contrast, in Eberos GML2D, the physical link to the
image file is created using Sprite2D, and animations are
modeled with a logical representation using SimpleAnima-
tions and CompositeAnimations. This means that un-
like SLGML, where each frame must be loaded into mem-
ory when the animation is played [7]; in Eberos GML2D,
the sprites are modeled with a single resource file, and ani-
mations are represented logically within this file.

SLGML is a very restricted domain-specific game modeling
language. This restriction can be overcome by allowing the
game designer to write additional code for customization.
The constraints can explain why the author of SLGML
needed to modify the game engine, allowing the game engine
to adapt to the modeling language. Unlike SLGML, the
code generated from Eberos GML2D models sits on top
of current game engine or development libraries, requiring
no modifications from these [9, 8].

5. CONCLUSION
We believe that the application of Model-Driven Develop-
ment [4] techniques can help to reduce the complexity of
the game development process. Reducing the complexity of
developing games means, among other things, a reduction in
the effort required for writing video games. This reduction
in effort translates into a shorter time spent programming
the game. It is our belief that with the rising complexity

of video game development, the methodology currently in
use in the industry is near its end. We proposed Eberos
GML2D in an attempt to reduce the level of complexity
of 2D games. While our approach showed some promising
results of 84.6%, the question still remains whether or not
the domain of 2D games can be fully captured by a Domain
Specific Language. Further exploration still remains as we
continue to explore the domain and expand our language to
model 3D games.

Acknowledgments
We like to thank the members of SIG-Games at FIU for
providing us with their data on their development process of
SpaceKatz. We also thank Corey Ginsberg for her editorial
feedback.

6. REFERENCES
[1] M. Buckland. Programming Game AI by Example.

Wordware Pub, Plano, Tx, 1st edition, 2005.

[2] Busby, Jason, Z. Parrish, and J. Wilson. Mastering
Unreal Technology Volume 1: the Art of Level Design,
volume 1. Sams Publishing, Indianapolis, 2009.

[3] H. M. Chandler. The Game Production Handbook.
Infinity Science, Hingham, Mass, 2009.

[4] S. Cook, G. Jones, S. Kent, and A. Cameron Wills.
Domain-specific Development with Visual Studio DSL
Tools. Addison-Wesley, Upper Saddle River, NJ, 2007.

[5] J. Dobbe. A domain-specific language for computer
games. Master’s thesis, Delft University of Technology,
2007.

[6] A. Furtado and A. de Medeiros Santos. Sharpludus:
improving game development experience through
software factories and domain-specific languages.
Universidade Federal de Pernambuco (UFPE)
Mestrado em Ciência da Computação centro de
Informática (CIN), 2006.

[7] A. Furtado and A. Santos. Using domain-specific
modeling towards computer games development
industrialization. 6th OOPSLA Workshop on
Domain-Specific Modeling (DSM’06), page 1, 2006.

[8] A. Furtado and A. Santos. Extending visual studio
.net as a software factory for computer games
development in the .net platform. 2nd International
Conference on Innovative Views of .NET Technologies
(IVNET06), 2007.

[9] A. W. B. Furtado, A. L. M. Santos, and G. L.
Ramalho. A computer games software factory and
edutainment platform for microsoft .net. SB Games
2007, pages 1–29, Jun 2007.

[10] J. Habgood, M. Overmars, and P. Wilson. The Game
Maker’s Apprentice: Game Development for
Beginners. Apress, Berkeley, CA, 2006.

[11] J. Novak. Game Development Essentials.
Delmar/Cengage Learning, New York, 2010.

[12] A. Rollings and E. Adams. Andrew Rollings and
Ernest Adams on Game Design. New Riders, London,
2003.

[13] S. J. Russel and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall/Pearson Education,
Upper Saddle River, NJ, 2003.


